
It’s Time to
Elevate.

AUTHORS
James Dolph
David B. Cross

Contributions from the IT-ISAC CSaaS-SIG

Moving the Discussion Forward on Secure by Default.

December 2023

INTRODUCTION
The complexity of systems and software is on the rise, along with the acceleration

of attacker sophistication. Making it harder and harder for technology

implementors and security teams to understand what they need to do to result in

more secure outcomes. This applies to both the consumer realm and the business

world. Providers of software and services can play an important role in

cybersecurity by actively designing systems that ensure security is the default

configuration, and making the software less secure takes extra effort by the end

user. Rather than the end user needing to take extra steps to enable security,

making something less secure should take extra effort. SaaS providers, in particular,

have an opportunity to leverage the scale benefits that fundamentally drive their

success to improve the security outcomes of their customers, critical infrastructure,

and the internet as a whole.

There is no shortage of articles, blogs, and writings about secure by default, secure

by design, and similar concepts recently. However, many of these seem to miss the

real point and end up sounding like a hardening guide, a how to build a secure

development lifecycle, or a generic laundry list of things that would make software

better. Like a lot of good ideas, (think zero trust) “Secure by Default” runs the risk of

being used as a marketing fodder rather than a clear set of principles that can be

applied to the user experience of security and the overall design of software and

systems. What we need is both a clear point of view on what secure by default is

and what engineers, user experience designers, security engineers, and providers of

technology should do to increase the likelihood of secure outcomes for their

consumers and technology implementers. This article is an attempt to provide a

point of view that can move the discussion forward.

1

WHAT IS SECURE BY
DEFAULT?
Let us start by defining what secure by default is and is not. Secure by default is

defined as a system or software that is configured to the most secure settings

possibly right “out of the box”. It’s helpful to describe secure by default in the context

of a hierarchy between insecure by default and secure by default. The closer to

secure by default, the higher the likelihood of secure outcomes and the more

opinionated the functionality becomes. Part of being secure by default is

understanding how functionality will be used in a secure way and very clearly defining

the most secure implementation or use.

Higher likelihood of
secure outcome

SECURE BY DEFAULT

SECURE BY DESIGN

SECURABLE

UNMANAGED

INSECURE BY DEFAULT
Lower likelihood of
secure outcome

More opinionated

More flexible

2

https://www.baeldung.com/cs/opinionated-software-design
https://www.baeldung.com/cs/opinionated-software-design

The full user experience of secure use and secure implementation has been
considered from the start and an opinionated set of default configurations are in
place. It’s not assumed that the user or implementor knows how to deploy security
appropriately or will do the right thing. This includes consideration for a broader set
of security capabilities that may be needed beyond the immediate functionality such
as logging, alerting on insecure configurations, updatability, preventing breaking
changes, isolation, defense in depth, etc.

The user or implementor must take explicit and deliberate action to use, operate, and
configure the software/functionality in an insecure manner if insecure use is even
allowed. It should be considered if an insecure state or usage pattern is actually
needed or supported. This might result in taking insecure choices away or providing
additional mitigating functionality for less secure use cases. It should be obvious to
the user or implementor both that a security choice is being made and what that
specific impact entails.

It is preferred to make the configuration descriptive so that users do not
inadvertently make an insecure choice where a choice is given (e.g. UI toggle says
something is insecure or dangerous, code methods use words like dangerously or
insecurely, and system configuration properties use words like insecure or
dangerous). When there are options or configurations to change, reduce, or eliminate
protection, that means security will be reduced. It also creates an opportunity to
accidentally or maliciously reduce security.

Secure by Default

Finally, insecure choices should continue to be visible and “noisy” -
ensuring the user or implementor does not forget their change of security.
Often an insecure choice is made with the intention of fixing it later and
that choice can be easily forgotten or buried in other technical debt. A final
consideration should be building feedback loops like field tests with users
or implementors with measures to determine if the functionality leads to
the expected secure outcomes.

3

https://blog.thinkst.com/2023/08/default-behaviour-sticks-and-so-do-examples.html

Secure By Design
Secure by design is a prerequisite for secure by default, but it is not as

opinionated, explicit, or comprehensive. There are defined ways to secure

functionality or use products and it has been considered during the design/spec

process. What can go wrong has been thought through and solutions are pre-

defined rather than bolted on. Insecure choices may be available or the default

behavior may not be secure. It is assumed that the user or implementor will want

a secure outcome, know what to do, and will do the right thing.

A common and recommended approach that organizations follow for driving

secure design is using Adam Shostack’s Four Question Framework for threat

modeling:

What are we working on?

What can go wrong?

What are we going to do about it?

Did we do a good job?

Securable
Securable means security has at least been considered and there are ways to secure

functionality. It is often bolted on or requires additional software, libraries, or

capabilities. Sometimes it is complex (e.g. 10 lines of code to check access control)

and it has not necessarily been thought about during the design, but you can

accomplish security.

4

https://shostack.org/resources/threat-modeling

Insecure by default means that security capabilities

are intentionally not considered. This may be because

it is disruptive, creates performance issues, or there

are point-in-time assumptions - for example, it will

never be on the internet.

It is no surprise that there is a considerable amount of

effort and thought required to be secure by default. In

the same way that the user experience of software

generally has become a higher priority and

systematized, ensuring the user experience of security

will become more common as well. It’s also reasonable

to assume that there may be tradeoffs in ease of use

or integration in highly secure by default products or

services. This can be mitigated to some extent by

actively considering the user experience and

supported use cases. At the end of the day, secure by

default involves removing dangerous choices and

making secure choices the default or only choice.

Unmanaged
Unmanaged means you are on your own to figure it out either way. There may

be communal knowledge on ways to get to a secure outcome, but the

functionality maintainers don’t actively manage security or security capabilities.

Insecure by Default

5

This year Amazon took an opportunity to change a long-standing recommendation

related to public access of S3 buckets and make it secure by default. Starting this

spring newly created S3 buckets have Block Public Access enabled which makes

granting public access an intentional decision and potentially prevents inadvertent

misconfigurations. This is a great example of taking lessons from both the use and

the intended outcome and introducing an opinionated secure by default setting. It’s

not easy to retrofit existing settings to be secure by default particularly for popular

services because of the complicated change management, enablement, and

communication required. However, it appears that Amazon made a bet that this

would be impactful to its users and would make a long-standing recommendation

more likely to stick, thus leading to better security outcomes. It also shows that there

is a potential path for other products and services to incrementally introduce secure

by default not only for new functionality but also for existing products and services.

EXAMPLES OF GOOD
WORK
Secure by default is not a new idea in the world of software and services, but until

recently it has been more of a theoretical concept that had minimal examples in the

technology world. Many open source projects, commercial software providers, and

SaaS providers have internalized the responsibility and opportunity that they have to

improve security outcomes by considering the security user experience and

implementing secure by default functionality. There are some examples that

exemplify the spirit and execution of secure by default well in the section below. It is

important to note that there is a lot of good work out there and this is not intended

to be an exhaustive list, just a few examples to illustrate the concepts.

Amazon S3 - Block Public
Access by Default

6

https://aws.amazon.com/about-aws/whats-new/2023/04/amazon-s3-security-best-practices-buckets-default/

With the increased popularity of client-side frameworks, the React team took an

opportunity to creatively introduce a secure by default posture for the framework

that prevents the developer from inadvertently including arbitrary unsanitized HTML

into a page that might lead to XSS. In the default case when a developer includes

HTML into a page, it is encoded or otherwise sanitized to prevent inadvertent XSS

vulnerabilities. In the case (e.g a preview for a microsite) where a developer would

like to knowingly introduce arbitrary HTML into a page, and they know that

protections, mitigations, or isolation have been applied there is a way to introduce

the HTML using dangerouslySetInnerHTML. The brilliant part of this pattern is that

the name of the function itself may cause the developer to stop and think about what

they are about to do. This in combination with clear documentation that is intended

to educate the engineer increases the chance that the outcome will be secure or that

the implementor clearly understands that there is a specific security choice being

made. Additionally, it is easy for a reviewer or auditor to see that this is a potentially

dangerous choice that warrants more scrutiny.

React - Dangerously Setting
the Inner HTML
Cross Site Scripting (XSS) is both a versatile attack vector and a

challenging problem to comprehensively solve in web

applications. It has been either referenced or explicitly listed on

the OWASP top 10 since the beginning of the top 10 project.

There have been many attempts to solve the issue in browsers,

by guiding developers to take some action (i.e. making

frameworks and apps Securable), and by building complex

testing tools and web application firewalls.

7

https://react.dev/reference/react-dom/components/common#dangerously-setting-the-inner-html
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-project-top-ten/

Photos are hands down one of the most personal or sensitive data that exists

on our mobile devices. There are also many ways that photos can be used in

applications for improved productivity, communication, and fun. On the other hand,

there is a potential for intentional or unintentional abuse, mishandling, or malicious

use of photos by 3rd party applications. Even the potential for this abuse may create

a chilling effect or decrease the trust users have in 3rd party applications on their

mobile devices.

iOS - Photo Access

Beginning in iOS 14, Apple introduced new capabilities to both increase transparency

in the access to photos that 3rd party applications have, and also start from a secure

by default position where the user has granular control over what is shared. The

functionality allows a user to permit even a single photo that the application can

access. This means a few things when it comes to security outcomes. First, when a

user doesn’t explicitly grant access to a photo, the app cannot access it in the

background or without their knowledge. Second, granularity allows users to have

confidence that they understand what data may be available outside of their devices

which may increase their trust and engagement with these apps. A simple example

use case that this opens up is for an application to use a single photo for an avatar or

profile picture without granting access to all photos. Lastly, it creates an opportunity

for the end user to go back and review what has been granted in the past and decide

if that access is still appropriate.

8

https://developer.apple.com/documentation/photokit/delivering_an_enhanced_privacy_experience_in_your_photos_app

There are numerous popular cloud and SaaS applications that have been

implemented and deployed across the internet that provide great examples of secure

by default functionality. The best example applications are implemented and

deployed with the following attributes by default:

No access is permitted without explicit addition.

All user accounts and activations require MFA.

All user accounts are disabled or adjusted automatically when role changes occur

(terminations, org changes, role changes etc.).

All elevated privileges are time-restricted based on approval.

All secrets are rotated automatically after each usage.

All roles are segregated and may not be combined.

All stored data is encrypted.

All sessions and data in transit is encrypted.

All interfaces and APIs require authentication and authorization.

Customer Identity providers are either required or available by default.

Enable security logging and monitoring.

OPPORTUNITIES FOR
CLOUD APPLICATIONS

9

While implementing secure by default may sound like a completely logical approach

to implementing security and driving secure outcomes for users, it is not as easy as

defining it as a requirement. It takes collaboration between security teams, user

experience (UX) teams, product managers, engineers, and others to come to common

ground on the way we think about it. There is as much work to be done in

understanding the customer as there is in understanding the idiosyncrasies of

software and how it can be abused.

We must focus on the outcome of the end user (the customer) to guide the approach

that security, UX, product managers, and engineering teams take to effectively

translate complex security needs into actionable requirements that are enabled by

default. Users and consumers have a very important role in demanding security by

default and to ensure that all their purchase decisions and deployments are designed

with security by default.

CALL TO ACTION

10

WHAT ARE YOU DOING TO ELEVATE YOUR SECURE
BY DEFAULT STATUS?

Thank you to the SaaS companies and providers that are taking the lead across the

industry to overcome this ongoing challenge and helping to improve the security of

all businesses and consumers.

CRITICAL SaaS SPECIAL INTEREST GROUP
(CSaaS SIG)

10

The Critical SaaS Special Interest Group (CSaaS SIG) is part of the
IT-ISAC and serves as a forum for CSaaS companies to
collaborate on a collective defense strategy to improve the
security and operational resiliency of their services and share
intelligence information with the industry. It enables companies
who are essential to the internet to share cyber threat
intelligence and effective security practices. The SIG holds a
weekly analysts meeting and is designed for security managers,
analysts, and IT executives from Critical SaaS companies.

INFORMATION TECHNOLOGY -
INFORMATION SHARING AND ANALYSIS
CENTER (IT-ISAC)
Founded in 2000, the Information Technology - Information
Sharing and Analysis Center (IT-ISAC) is a non-profit organization
that augments member companies' internal capabilities by
providing them access to curated cyber threat analysis, an
intelligence management platform, and a trusted forum to
engage with senior analysts from peer companies.

Questions? Interest in joining IT-ISAC and the CSaaS SIG?
Email us at csaas@it-isac.org.

IT-ISAC.ORG

